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Abstract 

Camera calibration should be easy to perform on the one hand and provide robust 

results on the other hand. These requirements motivate the proposed, "unusual" 

approach for multi-camera calibration. For camera calibration, common methods 

assume a geometrical model to correct distortion. Here, however, the proposed method 

introduses an approach that does not make any assumptions about the projection model 

of the lens and its parameters and thus allows nearly arbitrary distortions. This 

calibration procedure employs a special 360º pattern including different 

markers and fractal shapes in different resolutions which applicable in particular to 

multi-camera setups. For such multi-camera setups, not only a calibration is needed 

for each camera, but the individual images have to be aligned to fit together in a final 

image mosaic. Image alignment is usually considered a separate problem from 

distortion correction and thus handled  separately. The proposed approach, however, 

combines distortion correction and image alignment in a  single procedure. 

 This new approach employs graph pyramids to perform this registration problem and

 entails several advantages. First, it does in one procedure both distortion correction 

and image alignment using a specific 360º pattern. Second, it includes  highly 

parallelized processes meants that individual images are prepared by the cameras 

themselves and the computational cost at a central processor is reduced. Finally, there 

is no need to  detect key points and solve  the correspondence problem in order to 

do image stitching.  
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1. Introduction 
 
Camera calibration establishes a mapping between 3D real-world coordinates of an observed scene 
and the corresponding 2D coordinates in the acquired image. This mapping may be de_ned by 
parameters of a projection model. Generally, we distinguish extrinsic parameters (defining the 
pose of camera) and intrinsic parameters (depending on the internal nature of the lens and the 
sensor) [1]. 
 

1.1. Camera Models  
 
The pinhole camera model is the most basic camera model. It is used as an approximation within 
various computer vision applications [2]. In order to improve the calibration accuracy, the pinhole 
model is combined with lens distortion models [3, 4]. However, for lenses that produce a high 
visual distortion, e.g. wide-angle lenses with a field of view (FOV) larger than 180º, the pinhole 
model is not suitable. For instance, cameras equipped with fish-eye lenses with extremely short 
focal length provide hemispherical images. Their geometry cannot be described based on central 
perspective projection [5]. Straight lines in the scene appear as curves in images captured using 
such lenses [3] and require non-linear transformations in addition to the projective geometry [6]. 
Therefore, alternative projection models such as equidistant, equisolid-angle, orthographic and 
stereographic projection geometries have been used to compensate this deficiency [7, 4]. The main 
idea here is to first find an ideal mapping using a sylindrical projection and then apply a subsequent 
correction. In [8] a similar model based on the spherical projection is created to develop the 
epipolar geometry for fish-eye lenses and to solve the triangulation problem using the least-square 
method. In [9] the mapping between pixel coordinates and 3D rays in camera coordinates is 
considered a linear combination of non-linear functions of the image coordinates. The calibration 
procedures presented in [10] and [11] assume a radially symmetric distortion to calibrate fish-eye 
lenses, whereas the procedures presented in [12] and [13] use the knowledge about straight lines 
in the scene and force them to be straight in the image as well. Further techniques are based on 
Hough transform [14] and circle fitting [4] or use first order Taylor expansion to derive an inverse 
function for radial distortion [15]. All parametric methods depend on the accuracy of the chosen 
projection model and the degree to which this model approximates the actual projection of the 
lens. For non-standard lenses, deviations from the ideal projection can be large and often lead to 
unstable approximations [16]. 
 
Contrary to the calibration procedures with parametric models, non-parametric calibration 
methods aim at providing procedures independent of the type of camera or lens. While parametric 
camera models are state-of-the-art for many applications, non-parametric camera models have 
been much less discussed in literature. The main idea of these approaches is to assign a line of 
sight in 3D to every camera pixel [17, 18]. In [18] a set of virtual sensing elements called raxels is 
used to perform mapping from incoming scene rays to photosensitive elements of the image 
detector. In [17] a general concept for this type of calibration is described. However, the method 
does not yield satisfying results for non-central catadioptric cameras and the general algorithm 
also does not work for perspective cameras. Some authors call it 'generic' calibration [17]. 
 
1.2. Multi-Camera Setups 



 
 
Multi-camera calibration denotes the process of determining the relative poses of all cameras in 
the setup in a global coordinate system. There are different multi-camera setups which vary in 
configuration. Generally, there are three categories: inward-looking cameras, outward-looking 
cameras and camera networks: Inward-looking cameras share a common FOV, for outward-
looking cameras the FOVs of the individual cameras do not overlap and in camera networks, some 
cameras share a FOV, but not all FOVs overlap [19]. Camera pose determination can be performed 
employing a family of linear methods [20]. Moreover, object silhouettes (Shape-from-Silhouette) 
may be used to estimate the epipolar geometry of the cameras [21]. 
For the calibration of a network of cameras, objects are used to first determine the relative 
transformation between cameras with shared FOV. By utilizing bundle adjustment [22], the 
globally consistent localization is obtained. For this purpose, many methods are based on the 
"wand dance procedure" [23, 24] which uses a wand with one, two [25] or more [26] LEDs as a 
calibration object. Usually, the wand is moved to obtain more point correspondences [25]. For 
accurate results, the cameras must be precisely synchronized to capture images at the same time 
[27, 25]. In [27] a laser pointer was used to perform the self-calibration. Direct Linear 
Transformation (DLT) methods [28] can be used to estimate initial parameters for the first step of 
calibration [24]. Distributed camera networks may also be calibrated by defining the vision graph 
and using an algorithm based on belief propagation [29]. 
Outward-looking cameras do not have a common FOV [30, 31, 32]. However, for cameras with 
wide angle lenses, an overlap in the FOV may appear, which is the case for the setup is proposed 
in this paper. In case parts of the FOV overlap, the pose between cameras can be estimated using 
the rigidity constraint of the rig [30] or the rotation averaging approach [33] which uses bundle 
adjustment to improve accuracy [22, 31]. Furthermore, a planar mirror may be used to describe 
the camera pose [32]. Because of these variations in configurations of multi-camera setups, 
different calibration methods are commonly used for these categories and suitable applications 
may vary. Inward-looking setups are useful in 3D reconstruction, whereas outward-looking 
configurations are suitable for image stitching [34, 35] and thus the creation of panoramic images 
[36]. 
 

1.3. Stereo Cameras 
 
Stereo cameras are considered inward-looking setups as well. In stereo vision, the aim is to 
determine depth information from at least two images with overlapping FOV. For this purpose, 
corresponding points are determined and a disparity map is computed. Image rectification reduces 
the correspondence problem from a search in 2D space to a search in 1D along epipolar lines. 
Rectification needs re-sampling and consequently comes with a loss in resolution. Stereo 
disparities can be determined based on either local or global constraints [37, 38]. Approaches such 
as block matching [39], gradient-based optimization [40] and feature matching [41] are considered 
local methods whereas dynamic programming [11],intrinsic curves [43], and graph cuts [44] 
represent global methods. Moreover, window-based approaches [38] may use fixed [45] or 
adaptive [46] search windows. 
Contrary to the calibration methods for multi-camera setups described above, the paper here 
proposes a camera network calibration approach for which correspondence problems are not 
needed to be solved. Instead, it establishes a mapping to a global target coordinate system using 
image segmentation. final panorama image is handled by extrapolating a weighted warp from 
overlap regions of the image to non-overlap regions and by applying a constrained relaxation step 
of the full panorama frame to a reference projection. 



 
 
2. Model-free Single Camera Calibration 
 
In our proposed calibration method, the target coordinate system is defined by the calibration 
pattern used. This method therefore allows for many different target coordinate systems including 
non-standard ones, since their patches may be arranged in an arbitrary order as long as a certain 
coordinate may still be associated with every region (patch) of the calibration pattern. At the 
current stage a rectilinear coordinate system configured cylindrically around a multicamera setup 
is considered, but a spherical configuration may as well be an option.  
The calibration procedure in the paper is a mapping between the coordinate system of the input 
image and the target coordinate system of an undistorted (calibrated) image. The idea is to employ 
image segmentation to obtain this mapping: In a graph pyramid [47], each pixel in the base level 
is represented by a vertex and the vertices of neighboring pixels are connected by an edge. By 
consecutive contraction of edges pixels with similar values are merged into regions which are 
represented by vertices on a higher level - each level of such a pyramid is represented by a region 
adjacency graph (RAG) of decreasing detail (see Figure 1). 
 

 
Fig1. Construction of an image pyramid 

 
 For our purpose, the aim is to segment the image of the calibration pattern (e.g. a checkerboard 
pattern) using a graph-pyramid based approach until reaches the level where for each patch of the 
pattern, its pixels are merged into a single region represented by a vertex: this level is called the 
"RAG level". The identification of corresponding regions in the input and the target pattern is 
straightforward since the number of patches is the same and can thus be measured by counting in 
order to define the mapping at the respective level of the graph pyramid. To obtain a transformation 
on pixel-level, the high-level information is propagated down to the base level of the pyramid 
using the segmentation history that is stored in the canonical pyramid representation [22]. The rest 
of the steps is explained in the next section. 
 
3. Model-free multi-camera calibration 
 
The proposed calibration algorithm works for arbitrary arrangement of the cameras which the 
union of their field of views (FOVs) covers the 360º space around them. For the sake of simplicity 
and better explaining the proposed method, a specific arrangement of six cameras locating around 
a circle with equal angular distance between each one (60º) is considered. The Fig.2 shows such 
multi-camera system. In such an arrangement, the FOV for each camera is 180º and each part of 
the pattern can be seen by at least two adjacent cameras. However, there are some parts of the 
pattern which are seen by three cameras. These overlapping areas are illustrated in Fig.2. 



 
 

 
Fig2. A multi-camera system with 6 cameras (C_i  ,i=1,2,..,6). The Blue FOV shows the 

overlapping between two cameras and the Green FOV between three ones. 
 
 
3.1. Correspond the image to the real world 
 
In contrast to the common methods for calibrating a camera, here no specific model for the lens of 
the camera is assumed. Indeed, the distortion of the lens is assumed to be an unknown non-linear 
function. At this point, the task of calibration is to correspond every individual pixel of the 2D 
image to its correspondence in the 3D read world. Usually very wide FOV lenses result in a high 
distortion on the side of the image and less in the center. As a result, the objects aligned in the side 
of the camera become smaller and highly deformed and those objects around the center are highly 
magnified. Fig.3 shows such distortion in a fish eye lens.  
 

 
Fig3. An example of a checkerboard image taken by the very wide fish-eye lens. The 

patches are located on the sides become smaller and more distorted and those in center 
magnified. 

 
 
Having said that, no matter what is the distortion of the lens, the light beams traverse a unique line 
from the outer lens into the 3D world. In other words, there is a unique point for each pixel of the 



 
image plane projected to the corresponding point in space (see Fig4.). Therefore, the task of 
calibration is to define such correspondence matching.  
Generally, in camera calibration systems a known pattern, e.g. a black and white checkerboard, is 
shown to the camera and then the camera identifies the matching of some robust features (usually 
corners) for each corresponding feature. Now, having multiple correspondences between two set 
of virtual and real points, by assuming a predefined mode for the lens, the calibration is performed. 

 
Fig4.  The light beams traversing straight lines from the outer lens into the 3D space 

 
 
Generally, there are two types of camera models for the lenses. The standard models which assume 
pinhole projection and the non-standard ones that consider the radial distortion. Normal cameras 
belong to former and the fish-eye ones - to latter. Now, consider, for example, the fish-eye cameras. 
By assuming the predefined radial distortion model, after matching the corresponding points, all 
the rest points employ the same formula to be projected. Therefore, in the cases that there are non-
symmetrical distortions, like unwanted movement of lenses, or having non-symmetrical 
distortions, the non-corresponding points cannot correctly be matched and the calibration fails. 
 
In proposed calibration algorithm, we do not assume any predefined model and instead the 
correspondence matching task is performed by using the specific 360º calibration pattern. Fig.5 
shows the 360º black and white pattern. The proposed pattern encodes uniquely the 3D space 
around the set of the cameras. It includes specific markers which not only define the origin of the 
pattern, but also assign the relative coordinate into each individual patch of the checkerboard. In 
fact, each camera when sees a part of the pattern in its FOV, can immediately define where its 
location in relative to all other patches is. 
 

 



 
Fig5. The specific 360º blach and white pattern 

 
Beside the markers, there are some patches which have special fractal pattern in their inside. These 
patches paly the refinement procedure of calibration as are explained later. 
 

3.2. Identifying the corresponding part of the pattern in each individual camera 
 
Based on the arrangement of the cameras in a multi-camera system, the overlapping areas is 
defined. Here, since the cameras are located in a symmetrical constellation and since they have the 
same resolution, they divide the image plane into 6 rectangles which all together create the 360º 
image. By using the 360º pattern, the corresponding matching problem between the two adjacent 
cameras changes into the easily just counting the patches.     
 
3.3. Graph pyramid segmentation algorithm 
 
To detect the correspondence points of each individual camera and the 3D space, the graph 
segmentation algorithm for the binary pattern is employed. In such segmentation, first the primal 
graph of the image is created at the first level of the irregular pyramid. Second, by consecutively 
contracting the contraction kernels step by step the next levels are built. Finally, the region 
adjacency graph (RAG) at the top of the pyramid is represented. Such a RAG has the property that 
each of its node is consider as one patch of the checker board [48]. 
 

 
Fig6. (a) an irregular graph pyramid. (b) Image segmentation in a three levels pyramid. (4) 
a region adjacency graph (RAG) at top of the pyramid. Each node of the graph represent a 
distorted patch of the checker board. 
 
 

3.4. Finding the correspondences 
 
After segmenting the image each node of the resulted graph on top of the pyramid represents a 
unique patch of the checker board. Now, since there are special markers in the 360º pattern, one 
can simply find outs the coordinate of each patch by just counting patches in between till reaches 



 
to the pre-defined origin. The markers and the fractal shapes are illustrated in magnifid size in 
Fig.7.  
 

 
Fig7. (a) the fractal shapes in different resolutions. (b) the markers inside the 360º pattern 

 
 
3.5. Refining the calibration   
 
The 360º pattern has special fractal shape patches. The main property of the fractals is that they 
generate the same shape in different scales or different positions. Therefore, in the pattern as it 
sees in Fig. two fractals in two different scales are designed. Every normal patch in such pattern 
has uniform region inside its patch. This means that the corresponding points of the resulted graph 
for each normal patch has 4 points from the world. Hence, the points between the corners have not 
any correspondence. Now, at this point, by rotating the pattern around the multi-camera system 
each time there is a new pattern in the FOV of the cameras. This means that whenever the position 
of the high resolution (fractal) patches are changed, a new part of the space get a high number of 
corresponding points. Therefore, after rotating the pattern in a few times, the space receives the 
corresponding matching points as the high resolution in the fractal patch. Note that, if the pattern 
is fixed one can use the 360º turn-table to put the camera in center and rotate the multi-camera 
system instead of the pattern.  
    
 
4. Discussion and implementation. 
Following an important problem exists in cameral calibration explaines and the solution is 
discussed. Then the next part the results are summerised.  
 

4.1. Solving the problem of corresponding by using DT  
    
One of the common problem of the camera calibration is to define exactly where the location of a 
corner is. As it mentioned before, in a very wide FOV, the patches that are located in the side of 
the image receive much more distortion (see Fig.8). As the result, a single corner which is between 
two diagonal patches becomes two distinguish points. Therefore, the calibration may fail or 
becomes less accurate. In the proposed algorithm this multi-corners cause that the two adjacent 
one-color patches connected to each other and hence are considered as a one patch. Therefore, to 
avoid such situation, the algorithm computes the distance transform (DT) inside each individual 
patch of the pattern. This results in detecting the center of the patches instead of the corners. By 
using DT every patch has its local extremum which is uniquely identified its patch (Fig.9).    
 



 

 
Fig8. The multi-corner detection problem in side of the high distorted image 

 

 
Fig9. Using distance transform (DT) to shift the corners to the center of the patches 

 
 
 
4.2. Implementation 
 
The 360º cylindrical pattern is shown in Fig.10. It covers the area around the camiera rig and there 
are 6 cameras in the arrangement. The diameter of the pattern in cylindrical situation is 100 cm. 
Each fish-eye lens has 200º FOVand the resultion of each camera is 7800 by 3600 pixel. Size of 
the square patch in the pattern (read 3D world) is equal to 9 cm. The standart and little-planet view 
of the resulted stitched 360º image sre shown in Fig.11 and Fig.12, respectively.    



 

 
Fig10. The 6 fish-eye frames corresponding to 6 cameras in the multi-camera system. 

 

 
 

Fig11. The stitched 360º image in standard view 
 



 

 
Fig12. The stitched 360º image in the little-planet view 

 
 
5. Conclusion 

 
The paper proposes a new multi-camera calibration based on the graph pyramid and the novel 360º 
pattern. It does not assume any geometrical model for the lens distortion of the lenses and therefore 
can be applied for almost any arbitrary distortion. Morever, the specific design of the emplyed 
pattern enables it to uniquely encode the 3D world with high resoultion depending of what 
resolution the camera' set requires. The method also using distance transfoem shift the corners into 
the center of patches and therefore solves the problem of multi-corner detection happens along the 
side of the highly distorted image. The future work is to design a colorful version of the pattern 
and to simulate the non-symmetrical arrangemt of cameras.  
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